Paxinos-Watson Award   George Paxinos 

(Left: Charles Watson. Right: George Paxinos)  

This award has been made possible by a generous donation to the Society by Professor George Paxinos and Professor Charles Watson, commemorating the new edition of their important key reference text "The Rat Brain in Stereotaxic Coordinates" by Academic Press. The award was established for the most significant neuroscience paper published by any Member of the Society, and is judged annually. Successful nominees will receive a certificate and prize money of $500. Only the first and senior authors will receive a certificate, and the prize money will be sent to the nominating author.


  • Any Member of ANS may nominate one of their papers in the field of neuroscience; other authors may be Members or non-Members of the Society.
  • Each Member may nominate only one paper per year, but may be a co-author on a paper nominated by another Member.
  • A publication nominated for the Paxinos-Watson Award may not be nominated for the Mark Rowe Award or Marcello Costa Award.
  • The research in the paper must have been substantially undertaken within Australia or New Zealand.
  • The judges will rank the nominated papers on the basis of their scientific significance.
  • See the Application and Assessment Form for more information.

How to Apply

  • 2024 Applications deadline: Friday 12 July 2024
  • Applications to be made by email to the ANS secretariat, This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Applicants must be Members of ANS. 
  • See the Application and Assessment Form for more information.


Past Winners


Brett J. Kagan - In vitro neurons learn and exhibit sentience when embodied in a simulated game-world

Kagan BJ, Kitchen AC, Tran NT, Habibollahi F, Khajehnejad M, Parker BJ, Bhat A, Rollo B, Razi A, Friston KJ. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 110:3952-3969.e8, 2022.


Carlie Cullen - Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain

Cullen CL, Pepper RE, Clutterbuck MT, Pitman KA, Oorschot V, Auderset L, Tang AD, Ramm G, Emery B, Rodger J, Jolivet RB, Young KM. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep. 2021 Jan 19;34(3):108641. doi: 10.1016/j.celrep.2020.108641.

Aurina Arnatkeviciute - Genetic influences on hub connectivity of the human connectome

Arnatkeviciute A, Fulcher BD, Oldham S, Tiego J, Paquola C, Gerring Z, Aquino K, Hawi Z, Johnson B, Ball G, Klein M, Deco G, Franke B, Bellgrove MA, Fornito A. Genetic influences on hub connectivity of the human connectome. Nat Commun. 2021 Jul 9;12(1):4237. doi: 10.1038/s41467-021-24306-2


Jana Vukovic - 'Willis et al, 2020 Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner' (nominated by Elizabeth Coulson)
McFadyen J, Mattingley JB, Garrido MI. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. Elife. 2019 Jan 16;8:e40766. doi: 10.7554/eLife.40766
Yi-Lynn LiangMaryam Khoshouei, Giuseppe Deganutti, Alisa Glukhova, Cassandra Koole, Thomas S. Peat, Mazdak Radjainia, Jürgen M. Plitzko, Wolfgang Baumeister, Laurence J. Miller, Deborah L. Hay, Arthur Christopoulos, Christopher A. Reynolds, Denise Wootten and Patrick M. Sexton. Cryo-EM structure of the active, Gsprotein complexed, human CGRP receptor. (2018) Nature, 561(7724): 492-497.
Menuet C, Le S, Dempsey B, Connelly AA, Kamar JL, Jancovski N, Bassi JK, Walters K, Simms AE, Hammond A, Fong AY, Goodchild AK, McMullan S & Allen AM (2017) Excessive Respiratory Modulation of Blood Pressure Triggers Hypertension. Cell Metabolism 25: 739-748.
2017 (dual winners)
Matamales M., Skrbis Z., Hatch R.J., Belleine B.W., Götz J. and Bertran-Gonzalez J. (2016) Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection. Neuron 90:362-73.
Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M, van Hummel A, Stevens CH, Ippati S, Suh LS, Macmillan A, Sutherland G, Kril JJ, Silva AP, Mackay J, Poljak A, Delerue F, Ke YD, Ittner LM. (2016) Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science 354: 904-908.
Neumann, B., Coakley, S., Giordano-Santini, R., Linton, C., Lee, E.S., Nakagawa, A., Xue D. & Hilliard, M.A. (2015) EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature 517: 219–222.
2015 (dual winners)
Palmer, L.M., A.S. Shai, J.E. Reeve, H.L. Anderson, O. Paulsen and M.E. Larkum. (2014) NMDA spikes enhance action potential generation during sensory input. Nature Neuroscience 17:383-390
Sivyer, B. and S.R. Williams. (2013) Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nature Neuroscience 16:1848-1856
Forbes, E.M., A.W. Thompson, J. Yuan and G.J. Goodhill. (2012) Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance. Neuron 74:490-503.
Cheong, S.K., C. Tailby, P.R. Martin, J.B. Levitt, & S.G. Solomon. (2011) Slow intrinsic rhythm in the koniocellular visual pathway. Proc. Natl. Acad. Sci. USA 108:14659-14663.
Ittner, L.M., Y.D. Ke, F. Delerue, M. Bi, A. Gladbach, J. van Eersel, H. Wölfing, B.C. Chieng, M.J. Christie, I.A. Napier, A. Eckert, M. Staufenbiel, E. Hardeman, & J. Götz.(2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142:387-397.

Schulz, J., P. Redgrave, C. Mehring, A. Aertsen., K. Clements, J. Wickens & J. Reynolds (2009). Short-latency activation of striatal spiny neurons via subcortical visual pathways. J. Neurosci. 29:6336-6347.

Kole, M., S. Ilschner, B. Kampa, S. Williams, P. Ruben & G. Stuart (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11:178-186

Kole, M., J. Letzkus & G. Stuart. (2007). Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy. Neuron 55:633–647

2008 (dual winners)
Hammond, V., E. So, J. Gunnersen, H. Valcanis, M. Kalloniatis & S.S. Tan (2006) Layer positioning of late-born cortical interneurons is dependent on Reelin but not p35 signaling. J. Neurosci. 26:1646-1655.
Keeble, T., M. Halford, C. Seaman, N. Kee, M. Macheda, R. Anderson, S. Stacker and H. Cooper (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J. Neurosci. 26:5840-5848.
Spalding, K.L., R.D. Bhardwaj, B.A. Buchholz, H. Druid & J. Frisen (2005) Retrospective birth dating of cells in humans. Cell 122:133-143.
Goldshmit, Y., M.P. Galea, G. Wise, P.F. Bartlett & A.M. Turnley (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci. 24:10064-73.
Banks, G.B., P.T. Choy, N.A. Lavidis & P.G. Noakes (2003) Neuromuscular synapses mediate motor axon branching and motoneuron survival during the embryonic period of programmed cell death. Dev. Biol. 257:71-84.
Rietze, R.L., H. Valcanis, G.F. Brooker, T. Thomas, A.K. Voss, & P.F. Bartlett (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412:736-739.
2002 (dual winners)
Taylor, R., S. He, W. Levick & D.I. Vaney (2000) Dendritic computation of direction selectivity by retinal ganglion cells. Science 289:2347-2350.
Rosa, M.G., R. Tweedale & G. Elston (2000) Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex. J. Neurosci. 20:5552-5563

Gandevia, S.C., N. Petersen, J.E. Butler & J.L. Taylor. (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J. Physiol. 521:749-759.
Elston, G.N. & M.G. Rosa (1997). The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb. Cortex. 7:432-452.
Lipski, J., R. Kanjhan, B. Kruszewska & M. Smith. (1995) Barosensitive neurons in the rostral ventrolateral medulla of the rat in-vivo: morphological properties and relationship to C1 adrenergic neurons. Neuroscience 69:601-618.